GATE XL (Biochemistry)

Regulation and Inhibition of Enzymes

1. Multiple Choice Question (MCQ)

Which of the following is an example of allosteric regulation of an enzyme?

A) Competitive inhibition of hexokinase by glucose-6-phosphate

B) Activation of pyruvate dehydrogenase by ATP

C) Feedback inhibition of aspartate transcarbamoylase by CTP

D) Non-competitive inhibition of succinate dehydrogenase by malonate

Answer: C) Feedback inhibition of aspartate transcarbamoylase by CTP

2. Numerical Answer Type (NAT)

An enzyme follows Michaelis-Menten kinetics and has a **Km of 5 mM** and a **Vmax of 200 µmol/min**. In the presence of a **competitive inhibitor**, the apparent Km increases to **10 mM**, while Vmax remains unchanged. Determine the inhibitor's **inhibition constant (Ki)** if the inhibitor concentration is **5 mM**.

(Use the equation: Ki = [I] / ((Km' / Km) - 1))

Answer: Ki = 5 mM / ((10 / 5) - 1) = 5 mM / 1 = 5 mM

3. Multiple Choice Question (MCQ)

Which type of enzyme inhibition cannot be overcome by increasing the substrate concentration?

A) Competitive inhibition

B) Non-competitive inhibition

C) Uncompetitive inhibition

D) Both B and C

Answer: D) Both B and C

4. Multiple Select Question (MSQ)

Which of the following statements are true regarding enzyme regulation?

A) Allosteric enzymes do not follow Michaelis-Menten kinetics

B) Phosphorylation can either activate or inhibit enzyme activity

C) In competitive inhibition, Vmax decreases

D) Feedback inhibition is a form of metabolic regulation

Answer: A, B, and D

5. Numerical Answer Type (NAT)

A particular enzyme has a turnover number (kcat) of 500 s⁻¹ and a total enzyme concentration ([E]t) of 0.02 mM. Calculate the maximum velocity (Vmax) of the enzyme reaction in μ mol/min. (Use the formula: Vmax = kcat × [E]t)

Answer:

Vmax = (500 s⁻¹) × (0.02 mM) = **10 mM/s** = **600 μmol/min**